South East Asian J. of Mathematics and Mathematical Sciences Vol. 20, No. 1 (2024), pp. 81-98

DOI: 10.56827/SEAJMMS.2024.2001.7

ISSN (Online): 2582-0850 ISSN (Print): 0972-7752

UNICITY THEOREMS CONCERNING A L-FUNCTION AND A MEROMORPHIC FUNCTION

Harina P. Waghamore and Preetham N. Raj

Department of Mathematics, Jnanabharathi Campus, Bangalore University, Bengaluru - 560056, Karnataka, INDIA

E-mail : harinapw@gmail.com, preethamnraj@gmail.com

(Received: Dec. 27, 2023 Accepted: Mar. 30, 2024 Published: Apr. 30, 2024)

Abstract: Inspired by a lot of studies on the uniqueness results of a L-function with a meromorphic function, in this article, we examine the uniqueness of two differential polynomials, one generated by a meromorphic function with finitely many poles and another by a L-function, when they share two values with some weight. The results of our examination extend, generalize as well as improve the results of Hao and Chen [2, 3].

Keywords and Phrases: L-function, linear differential polynomial, sharing values, finite weight, Nevanlinna theory.

2020 Mathematics Subject Classification: 30D35.

1. Introduction

Let \mathbb{C} represent the complex plane, \mathbb{N} represent the set of natural numbers, $\mathbb{W} = \mathbb{N} \cup \{0\}, \overline{\mathbb{C}} = \mathbb{C} \cup \{\infty\}, \underline{\mathbb{C}} = \mathbb{C} \setminus \{0\}.$

We assume that the readers are well aware of the standard notations and definitions used in the Nevanlinna value distribution theory such as $T(r, \mathbf{f})$, $m(r, \mathbf{f})$, $N(r, \mathbf{f})$, $\overline{N}(r, \mathbf{f})$ etc. The reader can refer ([4], [15], [16]) for basics of Nevanlinna theory.

Let $\mathscr{F} = \{f(z)|f(z) \text{ is a non-constant meromorphic function in } \mathbb{C}\}\$ and let $\mathscr{G} = \{g(z)|g(z) \text{ is a non-constant meromorphic function } \mathbb{C}\$ with finitely many poles $\}$. For $f_1, f_2 \in \mathscr{F}$ and $b \in \overline{\mathbb{C}}$, if $f_1 - b$ and $f_2 - b$ have identical zeros taking into account